Световой и электронный микроскопы. Электронный микроскоп Первый электронный микроскоп

Для изучения нанообъектов разрешения оптических микроскопов (даже использующих ультра-фиолет ) явно недостаточно. В связи с этим в 1930х гг. возникла идея использовать вместо све-та электроны, длина волны которых, как мы знаем из квантовой физики, в сотни раз меньше, чем у фотонов.

Как известно, в основе нашего зрения лежит формирование изображения объекта на сетчатке глаза световыми волнами, отраженными от этого объекта. Если, прежде чем попасть в глаз, свет проходит сквозь оптическую систему микроскопа , мы видим увеличенное изображение. При этом ходом световых лучей умело управляют линзы, составляющие объектив и окуляр прибора.

Но как же можно получить изображение объекта, причём с гораздо более высокой разрешающей способностью, используя не световое излучение, а поток электронов? Другими словами, как возможно видение предметов на основе использования не волн, а частиц?

Ответ очень прост. Известно, что на траекторию и скорость электронов существенно влияют внешние электромагнитные поля, с помощью которых можно эффективно управлять движением электронов.

Наука о движении электронов в электромагнитных полях и о расчёте устройств, формирующих нужные поля, называется электронной оптикой .

Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Поэтому в электронном микроскопе устройства фоку-сировки и рассеивания электронного пучка называют “электронными линзами ”.

Электронная линза. Витки проводов катушки, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок

Магнитное поле катушки действует как собирающая или рассеивающая линза. Чтобы сконцентрировать магнитное поле, катушку закрывают магнитной «броней » из специального ни-кель-кобальтового сплава, оставляя лишь узкий зазор во внутренней части. Создаваемое таким образом магнитное поле может быть в 10–100 тыс. раз сильнее, чем магнитное поле Земли!

К сожалению, наш глаз не может непосредственно воспринимать электронные пучки. Поэтому они используются для “рисования ” изображения на люминесцентных экранах (которые светятся при попадании электронов). Кстати, тот же принцип лежит в основе работы мониторов и осцил-лографов.

Существует большое количество различных типов электронных микроскопов , среди которых наиболее популярен растровый электронный микроскоп (РЭМ). Мы получим его упрощенную схему, если поместим изучаемый объект внутрь электронно-лучевой трубки обыкновенного телевизора между экраном и источником электронов.

В таком микроскопе тонкий луч электронов (диаметр пучка около 10 нм) обегает (как бы сканируя) образец по горизонтальным строчкам, точку за точкой, и синхронно передает сигнал на кинескоп. Весь процесс аналогичен работе телевизора в процессе развертки. Источником электронов служит металл (обычно вольфрам), из которого при нагревании в результате термоэлектронной эмиссии испускаются электроны.

Схема работы растрового электронного микроскопа

Термоэлектронная эмиссия – выход электронов с поверхности проводников. Число вышедших электронов мало при Т=300K и экспоненциально растет с повышением температуры.

При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие- изза столкновений с электронами атомов, а третьи проходят сквозь него. В некоторых случаях испускаются вторичные электроны, индуцируется рентгенов-ское излучение и т.п. Все эти процессы регистрируются специальными детекторами и в преобразованном виде выводятся на экран, создавая увеличенную картинку изучаемого объекта.

Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. В связи с тем, что длина волны электрона на порядки меньше, чем фотона, в современных РЭМ это увеличение может достигать 10 миллионов15, соответствуя разрешению в единицы нанометров, что позволяет визуализировать отдельные атомы.

Главный недостаток электронной микроскопии – необходимость работы в полном вакууме, ведь наличие какоголибо газа внутри камеры микроскопа может привести к ионизации его атомов и существенно исказить результаты. Кроме того, электроны оказывают разрушительное воздействие на биологические объекты, что делает их неприменимыми для исследования во многих областях биотехнологии.

История создания электронного микроскопа – замечательный пример достижения, основанного на междисциплинарном подходе, когда самостоятельно развивающиеся области науки и техники, объединившись, создали новый мощный инструмент научных исследований.

Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, электричество и магнетизм как распространение электромагнитных волн. Волновая оптика объяснила явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение в световом микроскопе. Успехам квантовой физики мы обязаны открытием электрона с его специфическими корпускулярноволновыми свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию электронной оптики, одним из важнейших изобретений которой в 1930х годах стал электронный микроскоп.

Но и на этом ученые не успокоились. Длина волны электрона, ускоренного электрическим полем, составляет несколько нанометров. Это неплохо, если мы хотим увидеть молекулу или даже атомную решетку. Но как заглянуть внутрь атома? На что похожа химическая связь? Как выглядит процесс отдельной химической реакции? Для этого сегодня в разных странах ученые разрабатывают нейтронные микроскопы.

Нейтроны обычно входят в состав атомных ядер наряду с протонами и имеют почти в 2000 раз большую массу, чем электрон. Те, кто не забыл формулу де Бройля из квантовой главы,сразу сообразят, что и длина волны у нейтрона во столько же раз меньше, то есть составляет пикометры тысячные доли нанометра! Тогдато атом и предстанет исследователям не как расплывчатое пятнышко, а во всей своей красе.

Нейтронный микроскоп имеет много плюсов – в частности, нейтроны хорошо отображают атомы водорода и легко проникают в толстые слои образцов. Однако и построить его очень трудно: нейтроны не имеют электрического заряда, поэтому преспокойно игнорируют магнитные и электрические поля и так и норовят ускользнуть от датчиков. К тому же не так-то просто выгнать большие неповоротливые нейтроны из атомов. Поэтому сегодня первые прототипы нейтронного микроскопа еще весьма далеки от совершенства.

Что такое USB-микроскоп?

USB-микроскоп – это вид цифрового микроскопа. Вместо привычного окуляра здесь установлена цифровая камера, которая захватывает изображение с объектива и переносит его на экран монитора или ноутбука. К компьютеру такой микроскоп подключается очень просто – через обычный USB-кабель. В комплекте с микроскопом всегда идет специальное программное обеспечение, которое позволяет обрабатывать получаемые изображения. Вы сможете делать фотографии, создавать видеоролики, менять контрастность, яркость и размеры картинки. Возможности программного обеспечения зависят от производителя.

USB-микроскоп – это прежде всего компактный увеличительный прибор. Его удобно брать с собой в поездки, на встречи или за город. Обычно USB-микроскоп не может похвастаться большим увеличением, но для изучения монет, мелкого шрифта, предметов искусства, образцов тканей или денежных купюр его возможностей вполне хватает. С помощью такого микроскопа можно исследовать растения, насекомых и любые окружающие вас мелкие предметы.

Где купить электронный микроскоп?

Если вы окончательно определились с выбором модели, электронный микроскоп купить можно на этой страничке. В нашем интернет-магазине вы найдете электронный микроскоп по лучшей цене!

Если вы хотите воочию увидеть электронный микроскоп, а потом принять решение – посетите, ближайший к вам, магазин «Четыре глаза».
Да-да, и возьмите с собой детей! Без покупок и подарков точно не останетесь!

Мы начинаем публиковать блог предпринимателя, специалиста в области информационных технологий и по совместительству конструктора-любителя Алексея Брагина, в котором рассказывается о необычном опыте - вот уже год как автор блога занят восстановлением сложного научного оборудования - сканирующего электронного микроскопа - практически в домашних условиях. Читайте о том, с какими инженерно-техническими и научными задачами пришлось столкнуться Алексею и как он с ними справился.

Позвонил мне как-то друг и говорит: нашел интересную штуку, надо привезти к тебе, правда, весит полтонны. Так у меня в гараже появилась колонна от сканирующего электронного микроскопа JEOL JSM-50A. Ее давно списали из какого-то НИИ и вывезли в металлолом. Электронику потеряли, а вот электронно-оптическую колонну вместе с вакуумной частью удалось спасти.

Раз основная часть оборудования сохранилась, возник вопрос: нельзя ли спасти микроскоп целиком, то есть восстановить и привести его в рабочее состояние? Причем прямо в гараже, собственными руками, с помощью лишь базовых инженерно-технических знаний и подручных средств? Правда, прежде я никогда не имел дела с подобным научным оборудованием, не говоря уже о том, чтобы уметь им пользоваться, и не представлял, как оно работает. Но интересно ведь не просто запустить старую железяку в рабочее состояние - интересно во всем самостоятельно разобраться и проверить, возможно ли, используя научный метод, освоить совершенно новые области. Так я стал восстанавливать электронный микроскоп в гараже.

В этом блоге я буду рассказывать вам о том, что мне уже удалось сделать и что еще предстоит. Попутно я познакомлю вас с принципами функционирования электронных микроскопов и их основных узлов, а также расскажу о множестве технических препятствий, которые пришлось преодолеть по ходу работы. Итак, приступим.

Чтобы восстановить оказавшийся у меня микроскоп хотя бы до состояния «рисуем электронным лучом на люминесцентном экране», необходимо было следующее:

  • понять основы работы электронных микроскопов;
  • разобраться в том, что такое вакуум и какой он бывает;
  • как измеряют вакуум и как его получают;
  • как работают высоковакуумные насосы;
  • минимально разобраться в прикладной химии (какие растворители использовать для очистки вакуумной камеры, какое масло    использовать для смазки вакуумных деталей);
  • освоить металлообработку (токарные и фрезерные работы) для изготовления всевозможных переходников и инструментов;
  • разобраться с микроконтроллерами и схемотехникой их подключения.

  • Начнем по порядку. Сегодня я расскажу о принципах работы электронных микроскопов. Они бывают двух типов:

  • просвечивающий - TEM, или ПЭМ;
  • сканирующий - SEM, или РЭМ (от «растровый»).
  • Просвечивающий электронный микроскоп

    ПЭМ очень похож на обычный оптический микроскоп, только исследуемый образец облучается не светом (фотонами), а электронами. Длина волны электронного луча намного меньше, чем фотонного, поэтому можно получить существенно большее разрешение.

    Фокусировка электронного луча и управление им осуществляются с помощью электромагнитных или электростатических линз. Им даже присущи те же искажения (хроматические аберрации), что и оптическим линзам, хотя природа физического взаимодействия тут совершенно иная. Она, кстати, добавляет еще и новых искажений (вызванных закручиванием электронов в линзе вдоль оси электронного пучка, чего не происходит с фотонами в оптическом микроскопе).

    У ПЭМ есть недостатки: исследуемые образцы должны быть очень тонкие, тоньше 1 микрона, что не всегда удобно, особенно при работе в домашних условиях. Например, чтобы посмотреть свой волос на просвет, его необходимо разрезать вдоль хотя бы на 50 слоев. Это связано с тем, что проникающая способность электронного луча гораздо хуже фотонного. К тому же ПЭМ, за редким исключением, достаточно громоздки. Вот этот аппарат, изображенный ниже, вроде бы и не такой большой (хотя он выше человеческого роста и имеет цельную чугунную станину), но к нему еще прилагается блок питания размером с большой шкаф - итого необходима почти целая комната.


    Зато разрешение у ПЭМ - наивысшее. С его помощью (если сильно постараться) можно увидеть отдельные атомы вещества.


    University of Calgary


    Такое разрешение бывает особенно полезно для идентификации возбудителя вирусного заболевания. Вся вирусная аналитика ХХ века была построена на базе ПЭМ, и только с появлением более дешевых методов диагностики популярных вирусов (например, полимеразной цепной реакции, или ПЦР) рутинное использование ПЭМов для этой цели прекратилось.

    Например, вот как выглядит грипп H1N1 «на просвет»:


    University of Calgary


    Сканирующий электронный микроскоп


    SEM применяется в основном для исследования поверхности образцов с очень высоким разрешением (увеличение в миллион крат, против 2 тысяч у оптических микроскопов). А это уже гораздо полезнее в домашнем хозяйстве:)

    К примеру, так выглядит отдельная щетинка новой зубной щетки:

    То же самое должно происходить и в электронно-оптической колонне микроскопа, только тут облучается образец, а не люминофор экрана, и изображение формируется на основе информации с датчиков, фиксирующих вторичные электроны, упруго-отраженные электроны и прочее. Об электронном микроскопе именно этого типа и пойдет речь в этом блоге.

    И кинескоп телевизора, и электронно-оптическая колонна микроскопа работают только под вакуумом. Но об этом я расскажу подробно в следующем выпуске.

    (Продолжение следует)

    ЭЛЕКТРОННЫЙ МИКРОСКОП -прибор для наблюдения и фотографирования многократно (до 10 6 раз) увеличенного изображения объекта, в к-ром вместо световых лучей используются , ускоренных до больших энергий (30-1000 кэВ и более) в условиях глубокого . Физ. основы корпускулярно-лучевых оптич. приборов были заложены в 1827, 1834-35 (почти за сто лет до появления Э. м.) У. P. Гамильтоном (W. R. Gamil-ton), установившим существование аналогии между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Э. м. стала очевидной после выдвижения в 1924 гипотезы о волнах де Бройля, а техн. предпосылки были созданы X. Бушем (H. Busch), к-рый в 1926 исследовал фокусирующие свойства осесимметричных полей и разработал магн. электронную линзу. В 1928 M. Кнолль (M. Knoll) и E. Руска (E. Ruska) приступили к созданию первого магн. просвечивающего Э. м. (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками электронов. В последующие годы были построены первые растровые Э. м. (РЭМ), работающие на принципе сканирования, т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К сер. 1960-х гг. РЭМ достигли высокого техн. совершенства, и с этого времени началось их широкое применение в науч. исследованиях. ПЭМ обладают самой высокой разрешающей способностью , превосходя по этому параметру световые микроскопы в неск. тысяч раз. П р ед е л р а з р е ш е н и я, характеризующий способность прибора отобразить раздельно две максимально близко расположенные детали объекта, у ПЭМ составляет 0,15- 0,3 HM, т. е. достигает уровня, позволяющего наблюдать атомарную и молекулярную структуру исследуемых объектов. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны электронов. Линзы Э. м. обладают аберрациями, эффективных методов коррекции к-рых не найдено в отличие от светового микроскопа (см. Электронная и ионная оптика ).Поэтому в ПЭМ магн. электронные линзы (ЭЛ), у к-рых аберрации на порядок величины меньше, полностью вытеснили электростатические. Оптимальным диафрагмированием (см. Диафрагма в э л е к т р о н н о й и и о н н о й о п т и к е) удаётся снизить сферич. аберрацию объектива, влияющую

    на разрешающую способность Э. м. Находящиеся в эксплуатации ПЭМ можно разделить на три группы: Э. м. высокого разрешения, упрощённые ПЭМ и уникальные сверхвысо-коврльтные Э. м.

    ПЭМ с высокой разрешающей способностью (0,15- 0,3 нм) - универсальные приборы многоцелевого назначения. Используются для наблюдения изображения объектов в светлом и тёмном поле, изучения их структуры электро-нографич. методом (см. Электронография ),проведения локального количеств. при помощи спектрометра энергетич. потерь электронов и рентгеновских кристаллич. и полупроводникового и получения спектроскопич. изображения объектов с помощью фильтра, отсеивающего электроны с энергиями вне заданного энергетич. окна. Потери энергии электронов, пропущенных фильтром и формирующих изображение, вызываются присутствием в объекте какого-то одного хим. элемента. Поэтому контраст участков, в к-рых присутствует этот элемент, возрастает. Перемещением окна по энергетич. спектру получают распределения разл. элементов, содержащихся в объекте. Фильтр используется также в качестве монохроматора для повышения разрешающей способности Э. м. при исследовании объектов большой толщины, увеличивающих разброс электронов по энергиям и (как следствие) хроматическую аберрацию.

    С помощью дополнит. устройств и приставок изучаемый в ПЭМ объект можно наклонять в разных плоскостях на большие углы к оптич. оси, нагревать, охлаждать, деформировать. Ускоряющее электроны напряжение в высокоразрешающих Э. м. составляет 100-400 кВ, оно регулируется ступенчато и отличается высокой стабильностью: за 1 - 3 мин не допускается изменение его величины более чем на (1-2)·10 -6 от исходного значения. От ускоряющего напряжения зависит толшина объекта, которую можно "просветить" электронным пучком. В 100-киловольтных Э. м. изучают объекты толщиной от 1 до неск. десятков нм.

    Схематически ПЭМ описываемого типа приведён на рис. 1. В его электронно-оптич. системе (колонне) с помощью вакуумной системы создаётся глубокий вакуум (давление до ~10 -5 Па). Схема электронно-оптич. системы ПЭМ представлена на рис. 2. Пучок электронов, источником к-рых служит термокатод, формируется в электронной пушке и высоковольтном ускорителе и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное "пятно" малых размеров (при регулировке диаметр пятна может меняться от 1 до 20 мкм). После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной электронной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя - проекционная - линза формирует изображение на катодолюминесцентном экране, который светится под воздействием электронов. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, структура и хим. состав объекта меняются от точки к точке. Соответственно изменяется число электронов, прошедших через апертурную диафрагму, а следовательно, и плотность тока на изображении. Возникает амплитудный контраст, к-рый преобразуется в световой контраст на экране. В случае тонких объектов превалирует фазовый контраст , вызываемый изменением фаз , рассеянных в объекте и интерферирующих в плоскости изображения. Под экраном Э. м. расположен магазин с фотопластинками, при фотографировании экран убирается и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется объективной линзой с помощью плавной регулировки тока, изменяющей её магн. поле. Токами др. электронных линз регулируется увеличение Э. м., к-рое равно произведению увеличений всех линз. При больших увеличениях яркость свечения экрана становится недостаточной и изображение наблюдают с помощью усилителя яркости. Для анализа изображения производятся аналогово-цифровое преобразование содержащейся в нём информации и обработка на компьютере. Усиленное и обработанное по заданной программе изображение выводится на экран компьютера и при необходимости вводится в запоминающее устройство.

    Рис. 1. Электронный микроскоп просвечивающего типа (ПЭМ): 1 -электронная пушка с ускорителем; 2-конден сорные линзы; 3 -объективная линза; 4 - проекционные линзы; 5 -световой микроскоп, дополнительно увели чивающий изображение, наблюдаемое на экране; б -ту бус со смотровыми окнами, через которые можно наблю дать изображение; 7 -высоковольтный кабель; 8 - вакуумная система; 9 - пульт управления; 10 -стенд; 11 - высоковольтное питающее устройство; 12 - источник питания линз .

    Рис. 2. Электронно-оптическая схема ПЭМ: 1 -катод; 2 - фокусирующий цилиндр; 3 -ускоритель; 4 -пер вый (короткофокусный) конденсор, создающий уменьшенное изображение источника электронов; 5 - второй (длиннофокусный) конденсор, который переносит уменьшенное изображение источника электронов на объект; 6 -объект; 7 -апертурная диа фрагма объектива; 8 - объектив; 9 , 10, 11 -система проекционных линз; 12 -катодолюминесцентный экран .

    Упрощённые ПЭМ предназначены для науч. исследований, в к-рых не требуется высокая разрешающая способность. Их используют также для предварит. просмотра объектов, рутинной работы и в учебных целях. Эти приборы просты по конструкции (один конденсор, 2-3 электронные линзы для увеличения изображения объекта), имеют меньшее (60-100 кВ) ускоряющее напряжение и более низкую стабильность высокого напряжения и токов линз. Их разрешающая способность 0,5-0,7 нм.

    Сверхвысоковольтные Э. м . (СВЭМ) - приборы с ускоряющим напряжением от 1 до 3,5 MB - представляют собой крупногабаритные сооружения высотой от 5 до 15 м. Для них оборудуют спец. помещения или строят отдельные здания, являющиеся составной частью комплекса СВЭМ. Первые СВЭМ предназначались для исследования объектов большой (1 -10 мкм) толщины, при к-рой сохраняются свойства массивного твёрдого тела. Из-за сильного влияния хроматич. аберраций разрешающая способность таких Э. м. снижается. Однако по сравнению со 100-киловольтными Э. м. разрешение изображения толстых объектов в СВЭМ в 10-20 раз выше. Так как энергия электронов в СВЭМ больше, то длина их волны меньше, чем в ПЭМ высокого разрешения. Поэтому после решения сложных техн. проблем (на это ушло не одно десятилетие) и реализации высокой виброустойчивости, надёжной виброизоляции и достаточной механич. и электрич. стабильности на СВЭМ была достигнута самая высокая (0,13- 0,17 нм) для просвечивающих Э. м. разрешающая способность, позволившая фотографировать изображения атомарных структур. Однако сферич. аберрация и дефокусировка объектива искажают изображения, полученные с предельным разрешением, и мешают получению достоверной информации. Этот информационнный барьер преодолевается с помощью фокальных серий изображений, к-рые получают при разл. дефокусировке объектива. Параллельно для тех же дефокусировок проводят моделирование изучаемой атомарной структуры на компьютере. Сравнение фокальных серий с сериями модельных изображений помогает расшифровать микрофотографии атомарных структур, сделанные на СВЭМ с предельным разрешением. На рис. 3 представлена схема СВЭМ, размещённого в спец. здании. Осн. узлы прибора объединены в единый комплекс с помощью платформы, к-рая подвешена к потолку на четырёх цепях и амортизационных пружинах. Сверху на платформе находятся два бака, наполненные электроизоляционным газом под давлением 3-5 атм. В один из них помещён высоковольтный генератор, в другой- электростатич. ускоритель электронов с электронной пушкой. Оба бака соединены патрубком, через к-рый высокое напряжение от генератора передаётся на ускоритель. Снизу к баку с ускорителем примыкает электронно-оптич. колонна, расположенная в нижней части здания, защищённой перекрытием от рентг. излучения, возникающего в ускорителе. Все перечисленные узлы образуют жёсткую конструкцию, обладающую свойствами физ. маятника с большим (до 7 с) периодом собств. , к-рые гасятся жидкостными демпферами. Маятниковая система подвески обеспечивает эффективную изоляцию СВЭМ от внеш. вибраций. Управление прибором производится с пульта, находящегося около колонны. Устройство линз, колонны и др. узлов прибора подобно соответствующим устройствам ПЭМ и отличается от них большими габаритами и весом.


    Рис. 3. Сверхвысоковольтный электронный микроскоп (СВЭМ): 1-виброизолирующая платформа; 2-цепи , на которых висит платформа; 3 - амортизирующие пружины; 4-баки, в которых находятся генератор вы сокого напряжения и ускоритель электронов с электрон ной пушкой; 5-электронно-оптическая колонна; 6 - перекрытие, разделяющее здание СВЭМ на верхний и нижний залы и защищающее персонал, работающий нижнем зале, от рентгеновского излучения; 7 - пульт управления микроскопом .

    Растровые Э. м . (РЭМ) с термоэмиссионной пушкой - самый распространённый тип приборов в электронной микроскопии . В них применяются вольфрамовые и гексабо-рид-лантановые термокатоды. Разрешающая способность РЭМ зависит от электронной яркости пушки и в приборах рассматриваемого класса составляет 5-10 нм. Ускоряющее напряжение регулируется в пределах от 1 до 30- 50 кВ. Устройство РЭМ показано на рис. 4. При помощи двух или трёх электронных линз на поверхность образца фокусируется узкий электронный зонд. Магн. отклоняющие катушки развёртывают зонд по заданной площади на объекте. При взаимодействии электронов зонда с объектом возникает несколько видов излучений (рис. 5): вторичные и отражённые электроны; оже-электроны; рентгеновское тормозное излучение и характеристическое излучение (см. Характеристический спектр); световое излучение и т. д. Любое из излучений, токи электронов, прошедших сквозь объект (если он тонкий) и поглощённых в объекте, а также напряжение, наведённое на объекте, могут регистрироваться соответствующими детекторами, преобразующими эти излучения, токи и напряжения в электрич. сигналы, к-рые после усиления подаются на электронно-лучевую трубку (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится синхронно с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению размера кадра на экране ЭЛТ к соответствующему размеру на сканируемой поверхности объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Осн. достоинство РЭМ - высокая информативность прибора, обусловленная возможностью наблюдать изображения, используя сигналы разл. детекторов. С помощью РЭМ можно исследовать микрорельеф, распределение хим. состава по объекту, p-n -переходы, производить рентг. спектральный анализ и др. РЭМ широко применяются и в технол. процессах (контроль в электронно-литог-рафич. технологиях, проверка и выявление дефектов в микросхемах, метрология микроизделий и др.).


    Рис. 4. Схема растрового электронного микроскопа (РЭМ): 1 -изолятор электронной пушки; 2 -V -образ ный термокатод; 3 -фокусирующий электрод; 4 - анод; 5 - конденсорные линзы; 6 -диафрагма; 7 - двухъярусная отклоняющая система; 8 -объектив; 9 -апертурная диафрагма объектива; 10 -объект; 11 -детектор вторичных электронов; 12 -кристал лический спектрометр; 13 -пропорциональный счётчик; 14 - предварительный усилитель; 15 - блок усиления; 16, 17 -аппаратура для регистрации рентгеновского излучения; 18 - блок усиления; 19 - блок регулировки увеличения; 20, 21 - блоки гори зонтальной и вертикальной развёрток; 22, 23 -элек тронно-лучевые трубки .


    Рис. 5. Схема регистрации информации об объекте , получаемой в РЭМ; 1-первичный пучок электронов; 2-детектор вторичных электронов; 3-детектор рент геновского излучения; 4-детектор отражённых элект ронов; 5-детектор оже-электронов; 6-детектор све тового излучения; 7 - детектор прошедших электро нов; 8 - схема для регистрации тока прошедших через объект электронов; 9-схема для регистрации тока поглощённых в объекте электронов; 10-схема для ре гистрации наведённого на объекте электрического потенциала .

    Высокая разрешающая способность РЭМ реализуется при формировании изображения с использованием вторичных электронов. Она находится в обратной зависимости от диаметра зоны, из к-рой эти электроны эмитируются. Размер зоны зависит от диаметра зонда, свойств объекта, скорости электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и разрешающая способность падает. Детектор вторичных электронов состоит из фотоэлектронного умножителя (ФЭУ) и электронно-фотонного преобразователя, осн. элементом к-рого является сцинтил-лятор. Число вспышек сцинтиллятора пропорционально числу вторичных электронов, выбитых в данной точке объекта. После усиления в ФЭУ и в видеоусилителе сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от топографии образца, наличия локальных электрич. и магн. микрополей, величины коэф. вторичной электронной эмиссии, к-рый, в свою очередь, зависит от хим. состава образца в данной точке.

    Отражённые электроны улавливаются полупроводниковым детектором с p - n -переходом. Контраст изображения обусловлен зависимостью коэф. отражения от угла падения первичного пучка в данной точке объекта и от ат. номера вещества. Разрешение изображения, получаемого в "отражённых электронах", ниже, чем получаемого с помощью вторичных электронов (иногда на порядок величины). Из-за прямолинейности полёта электронов информация об отд. участках объекта, от к-рых прямого пути к детектору нет, теряется (возникают тени). Для устранения потерь информации, а также для формирования изображения рельефа образца, на к-рое не влияет его элементный состав и, наоборот, для формирования картины распределения хим. элементов в объекте, на к-рую не влияет его рельеф, в РЭМ применяется детекторная система, состоящая из неск. размещённых вокруг объекта детекторов, сигналы к-рых вычитаются один из другого или суммируются, а результирующий сигнал после усиления подаётся на модулятор ЭЛТ.

    Рентг. характеристич. излучение регистрируется кри-сталлич. (волноводисперсным) или полупроводниковым (энергодисперсным) спектрометрами, к-рые взаимно дополняют друг друга. В первом случае рентг. излучение после отражения кристаллом спектрометра попадает в газовый пропорциональный счётчик , а во втором - рентг. кванты возбуждают сигналы в полупроводниковом охлаждаемом (для снижения шума) детекторе из кремния, легированного литием, или из германия. После усиления сигналы спектрометров могут быть поданы на модулятор ЭЛТ и на её экране возникнет картина распределения того или иного хим. элемента по поверхности объекта.

    На РЭМ, оснащённом рентг. спектрометрами, производят локальный количеств. анализ: регистрируют число импульсов, возбуждаемых рентг. квантами от участка, на к-ром остановлен электронный зонд. Кристаллич. спектрометр с помощью набора кристаллов-анализаторов с разл. межплоскостными расстояниями (см. Брэгга-Вульфа условие )дискриминирует с высоким спектр. разрешением характеристич. спектр по длинам волн, перекрывая диапазон элементов от Be до U. Полупроводниковый спектрометр дискриминирует рентг. кванты по их энергиям и регистрирует одновременно все элементы от В (или С) до U. Его спектральное разрешение ниже, чем у кристаллич. спектрометра, но выше чувствительность. Имеются и др. преимущества: быстрая выдача информации, простая конструкция, высокие эксплуатационные характеристики.

    Растровые оже-Э. м . (РОЭМ)-приборы, в к-рых при сканировании электронного зонда детектируются оже-электроны из глубины объекта не более 0,1-2 нм. При такой глубине зона выхода оже-электронов не увеличивается (в отличие от электронов вторичной эмиссии) и разрешение прибора зависит только от диаметра зонда. Прибор работает при сверхвысоком вакууме (10 -7 -10 -8 Па). Его ускоряющее напряжение ок. 10 кВ. На рис. 6 представлено устройство РОЭМ. Электронная пушка состоит из гексаборид-лантанового или вольфрамового термокатода, работающего в режиме Шоттки, и трёхэлектродной электростатич. линзы. Электронный зонд фокусируется этой линзой и магн. объективом, в фокальной плоскости к-рого находится объект. Сбор оже-электронов производится с помощью цилиндрич. зеркального анализатора энергий, внутренний электрод к-рого охватывает корпус объектива, а внешний примыкает к объекту. С помощью анализатора, дискриминирующего оже-электроны по энергиям, исследуется распределение хим. элементов в поверхностном слое объекта с субмикронным разрешением. Для исследования глубинных слоев прибор оснащается ионной пушкой, при помощи к-рой удаляются верхние слои объекта методом ионно-лучевого травления.

    Рис. б. Схема растрового оже-электронного микроскопа (РОЭМ): 1 - ионный насос; 2- катод; 3 - трёхэлектродная электростатическая линза; 4-многоканальный детектор; 5-апертурная диафрагма объектива; 6-двухъярусная отклоняющая система для развёртки электронного зонда; 7-объектив; 8- наружный электрод цилиндрического зеркального анализатора; 9-объект .

    РЭМ с автоэмиссионной пушкой обладают высокой разрешающей способностью (до 2-3 нм). В автоэмиссионной пушке используется катод в форме острия, у вершины к-рого возникает сильное элекгрич. поле, вырывающее электроны из катода (автоэлектронная эмиссия) . Электронная яркость пушки с автоэмиссионным катодом в 10 3 -10 4 раз выше яркости пушки с термокатодом. Соответственно увеличивается ток электронного зонда. Поэтому в РЭМ с автоэмиссионной пушкой осуществляют наряду с медленной быструю развёртку, а диаметр зонда уменьшают для повышения разрешающей способности. Однако автоэмиссионный катод работает устойчиво лишь при сверхвысоком вакууме (10 -7 -10 -9 Па), что усложняет конструкцию и эксплуатацию таких РЭМ.

    Просвечивающие растровые Э. м . (ПРЭМ) обладают столь же высокой разрешающей способностью, как и ПЭМ. В этих приборах применяются автоэмиссионные пушки, работающие в условиях сверхвысокого вакуума (до 10 -8 Па), обеспечивающие достаточный ток в зонде малого диаметра (0,2-0,3 нм). Диаметр зонда уменьшают две магн. линзы (рис. 7). Ниже объекта расположены детекторы - центральный и кольцевой. На первый попадают нерассеянные электроны, и после преобразования и усиления соответствующих сигналов на экране ЭЛТ появляется светлопольное изображение. На кольцевом детекторе собираются рассеянные электроны, создающие темнополь-ное изображение. В ПРЭМ можно исследовать более толстые объекты, чем в ПЭМ, т. к. возрастание числа неупруго рассеянных электронов с толщиной не влияет на разрешение (после объекта электронная оптика для формирования изображения отсутствует). С помощью анализатора энергии электроны, прошедшие сквозь объект, разделяются на упруго и неупруго рассеянные пучки. Каждый пучок попадает на свой детектор, и на ЭЛТ наблюдаются соответствующие изображения, содержащие дополнит. информацию об элементном составе объекта. Высокое разрешение в ПРЭМ достигается при медленных развёртках, т. к. в зонде диаметром всего 0,2-0,3 нм ток получается малым. ПРЭМ оснащаются всеми используемыми в электронной микроскопии устройствами для аналитич. исследований объектов, и в частности спектрометрами энерге-тич. потерь электронов, рентг. спектрометрами, сложными системами детектирования прошедших, обратно рассеянных и вторичных электронов, выделяющих группы электронов, рассеянных на разл. углы, имеющих разл. энергию и т. п. Приборы комплектуются ЭВМ для комплексной обработки поступающей информации.

    Рис. 7. Принципиальная схема просвечивающего растро вого электронного микроскопа (ПРЭМ): 1-автоэмис сионный катод; 2-промежуточный анод; 3- анод; 4 - диафрагма "осветителя"; 5-магнитная линза; 6-двухъ ярусная отклоняющая система для развёртки электрон ного зонда; 7-магнитный объектив; 8 - апертурная диафрагма объектива; 9 -объект; 10 - отклоняющая система; 11 - кольцевой детектор рассеянных электронов; 12 -детектор нерассеянных электронов (удаляется при работе магнитного спектрометра); 13 - магнитный спектрометр; 14-отклоняющая система для отбора электронов с различными потерями энергии; 15 - щель спектрометра; 16-детектор спектрометра; ВЭ-вторич ные электроны; hv -рентгеновское излучение .

    Эмиссионные Э. м . создают изображение объекта электронами, к-рые эмитирует сам объект при нагревании, бомбардировке первичным пучком электронов, под действием эл--магн. излучения и при наложении сильного электрич. поля, вырывающего электроны из объекта. Эти приборы обычно имеют узкое целевое назначение (см. Электронный проектор ).

    Зеркальные Э. м . служат гл. обр. для визуализации элек-тростатич. "потенциальных рельефов" и магн. микрополей на поверхности объекта. Осн. электронно-оптич. элементом прибора является электронное зеркало ,причём одним из электродов служит сам объект, к-рый находится под небольшим отрицат. потенциалом относительно катода пушки. Электронный пучок направляется в электронное зеркало и отражается полем в непосредственной близости от поверхности объекта. Зеркало формирует на экране изображение "в отражённых пучках": микрополя возле поверхности объекта перераспределяют электроны отражённых пучков, создавая контраст в изображении, визуа-лизирующий эти микрополя.

    Перспективы развития Э. м . Совершенствование Э. м. с целью увеличения объёма получаемой информации, проводившееся многие годы, продолжится и в дальнейшем, а улучшение параметров приборов, и прежде всего повышение разрешающей способности, останется главной задачей. Работы по созданию электронно-оптич. систем с малыми аберрациями пока не привели к реальному повышению разрешения Э. м. Это относится к не-осесимметричным системам коррекции аберраций, криогенной оптике, к линзам с корректирующим пространств. в приосевой области и др. Поиски и исследования в указанных направлениях ведутся. Продолжаются поисковые работы по созданию электронных гологра-фич. систем, в т. ч. и с коррекцией частотно-контрастных характеристик линз. Миниатюризация электростатич. линз и систем с использованием достижений микро- и на-нотехнологий также будет способствовать решению проблемы создания электронной оптики с малыми аберрациями.

    Лит.: Практическая растровая электронная микроскопия, под ред. Д. Гоулдстейна, X. Яковица, пер. с англ., M., 1978; Спенс Д., Экспериментальная электронная микроскопия высокого разрешения, пер. с англ., M., 1986; Стоянов П. А., Электронный микроскоп СВЭМ-1, "Известия АН СССР, сер. физ.", 1988, т. 52, № 7, с. 1429; Хокс П., Каспер Э., Основы электронной оптики, пер. с англ.,т. 1-2, M., 1993; Oechsner H., Scanning auger microscopy, Le Vide, les Couches Minces, 1994, t. 50, № 271, p. 141; McMul-lan D., Scanning electron microscopy 1928-1965, "Scanning", 1995, t. 17, № 3, c. 175. П. А. Стоянов .